
fluorinated hydrocarbon and noting that the degree of halogenation 
increases in going from Propellant 152a to 142b to 114 or 12. 

To determine the relative stability of the prepared epinephrine 
salts compared to epinephrine bitartrate, several formulations were 
prepared and studied over a 60-day period. Based upon the results 
of the solubility study, it was decided to formulate several aerosol 
preparations by suspending thc salt in the propellant. Since epi- 
nephrine bitartrate is slightly soluble in alcohol, those formulations 
containing alcohol (Formulations A and B) would have some of the 
epinephrine salt in partial solution. The other formulations contain 
the salt in suspension. The former formulations were prepared so 
that some indication of the stability of the salt in solution could be 
obtained. The results gained from this study of the epinephrine 
salts in various aerosol formulations indicate that the decomposi- 
tion taking place under these conditions can he treated as first 
order. This finding can be noted in Figs. 1-4 where a straight line 
resulted from a plot of log concentration cersus time. 

Of all the salts studied, epinephrine bitartrate and maleate seem 
to be the most stable under the conditions of this study. It was also 
noted that sodium bisulfite, present as an antioxidant, had a ten- 
dency to reduce the rate of decomposition as compared to ascorbic 
acid. No attempt was made to adjust the pH of the solutions but 
the effect of pH upon the stability of these formulations is currently 
under study. The presence of ethyl alcohol in the formulation seemed 
to have very llttle effect, if any, upon the decomposition of the epi- 
nephrine salts. In fact, a comparison of Formulation D, containing 
only epinephrine salt and propellant, with the other formulations 
shows very little difference. However, these results might be quite 
different if extended over a longer period of time. The presence of 
ethyl alcohol, however, can affect the stability of the dispersion. 
resulting in agglomeration and caking. The same conclusion can be 
stated for those formulations containing a surfactant. Additional 
studies are underway to study more fully the stability of these epi- 
nephrine salts, both from a physical and a chemical viewpoint. Of 
all of the salts studied, epinephrine maleate shows the greatest 
potential for use in aerosol form and is under further study. 

SUMMARY 

Epinephrine maleate, fumarate, and malate were prepared by 
modification of an existing method. The partition coefficient of 
these epinephrine salts was determined between octyl alcohol- 
water and between hexadecyl alcohol-water and found to be 
similar to the partition coefficient of epinephrine bitartrate. Epi- 

nephrine bitartrate and malate were found to be the least soluble in 
the fluorocarbon propellant while the maleate and fumarate showed 
a higher degree of solubility in these propellants. The results of the 
solubility study of these epinephrine salts in the propellants in- 
dicated that the formulation of epinephrine salts as an aerosol 
dosage form must be accomplished through use of a cosolvent or 
by formulating a dispersion system. From the stabilty study of the 
epinephrine salts in an aerosol formulation, it was noted that the 
decomposition which took place followed first-order kinetics and 
that epinephrine maleate and bitartrate seem to  be more stable than 
the other salts of epinephrine. Further studies are indicated to 
determine the extent of this stability. 
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Dissolution Rate Patterns of Log-Normally 
Distributed Powders 

J.  THUR0 CARSTENSENA and MAHMOUD N. MUSA 

Abstract 0 Particles dissolving in a dissolution medium initially 
decrease in linear dimension, while the number of particles remains 
unaltered. At a particular point in time (L) the smallest particle 
disappears, and from that point on the number of Particks de- 
creases. These phenomena were simulated on a digital computer, 
and the agglomerate dissolution pattern under sink conditions 
was shown to follow a cube law, but the slopes differ according 
to  whether t < t ,  or r > 1,. 

Keyphrases Dissolution rates--patterns of log-normally dis- 
tributed powders 0 Powders, dissolution under sink conditions- 
rate patterns, (approximate) numerical solution of log-normal 
distribution integrals 0 Computer simulations--particle dissolu- 
tion, disappearance Particle dissolution, sink conditions- 
powder, log-normal distribution, rate patterns, computer sirnula- 
t ion 

Rates of dissolution and the mechanisms involved in 
the dissolution process have been the subjects of large 
volumes of literature in the last decade. The importance 

of dissolution rates in  biopharmaceutics is manifested 
by the official methods for dissolution rate testing 
recently adopted by the USP and the NF. 
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Table I-Means and Standard Deviations of the Log-Normal Distributions Employed and Slopes of the Cube Root Treatments of the Data 

Log P ,  ? 

p in Microns U 
Slope-- Log. P, -__ 

r < T o  7 > 7 e  p in Microns U 
-Slope-- 
7 < rc 7 > r e  

0.69897 0.01380 0.9251 7.86 1.34242 0.01380 0.2102 1.78 

1.oooO 

1.23045 

0.02009 0.9207 5.45 
0.02639 0.9i61 4.16 
0.03218 0.9125 3.45 
0.03798 0.9059 2.94 
0.01380 0.4625 3.91 
0.02009 0.4604 2.72 
0.02639 0.4581 2.08 
0.03218 0.4563 1.72 
0.03798 0.4530 1.47 
0.01380 0.2721 2.30 
0.02009 0.2708 1.60 
0.02639 0.2694 1.23 
0.03218 0.2684 1.02 
0.03798 0.2664 0.87 

1.47712 

1.60206 

0.02009 0.2093 1.24 
0.02639 0.2082 0.95 
0.03218 0.2074 0.78 
0.03798 0.2059 0.67 
0.01380 0.1542 1.31 
0.0209 0.1535 0.91 . ~ .. . .~ 

0,02639 0.1527 0.70 
0.03218 0.1521 0.58 
0.03798 0.1510 0.49 
0.01380 0.1156 0.98 
0.02009 0.1151 0.68 
0.02639 0.1145 0.52 
0.03218 0.1141 0.43 
0.03798 0.1132 0.37 

The principal theoretical considerations in this field 
were published by Higuchi and Hiestand ( I ,  2). Their 
treatment assumes that a steady state is attained in the 
liquid surrounding the solid particle and that the particle 
sizes are distributed log-normally ; it also takes into 
account the temporal disappearance of particles from 
the low distribution tail. The ensuing expressions be- 
come analytically unmanageable and integrals are solved 
by approximation functions, notably substituting 
n(uo) = K/uo4 for the log-normal distribution, where uo 
is the initial particle size, n is the fraction of particles, 
and K is a constant. The function approximates the log- 
normal oversize distribution over 60% of the particle- 
size range, and reasonable agreement with experiment 
is achieved in this manner. 

The purpose of the study reported here was to obtain 
solutions of the integrals not by rigid integration of 
approximation functions but rather by (approximate) 
numerical solution of integrals of the actual log-normal 
distribution. Such work, obviously, is done with the 
aid of a computer. The Noyes-Whitney equation (3, 4) 
and the ensuing Hixson and Crowell equation ( 5 )  were 
employed here as vantage points for the treatment. 

Many authors (6-1 I )  showed that particles prepared 
by procedures such as milling and grinding (6) and 
precipitation ( 1  l), which are based on random processes, 

0 4 8 36 40 44 
TIM €-LENGTH 

Figure I-An example of particle-size distributions at various times 
during the dissolution process. The ordinate is number of particles; 
the original number of particles is 10,000 at a “mean” diameter of 
40 p;  the smallest diameter is T, = 36.36 and the largest is Q = 
44.00 p.  At time-length 36.36, there is still the same number ofpar- 
tides but the “mean” diameter is now 3.64 p. At time-length 40, half 
of the particles have disappeared. 

produced skewed distribution functions close to log- 
normal. It is assumed in the following discussion that 
the powder dissolving is of such a log-normal distribu- 
tion. 

THEORETICAL 

If  the Noyes-Whitney treatment (3, 4) is applied under the 
assumption of perfect sink conditions, then: 

where w is the amount by weight [i.e.,  - (dw/dt) is the decrease in 
weight per unit time], D is the diffusion rate constant, a is the 
“diameter,” and C ,  is the saturation concentration of the substance 
in the dissolution medium. The assumption is made that the 
particles are spherical, but any shape that retains its shape factor 
during the dissolution process gives rise to, basically, the same 
equations developed here. The subscripts i in Eq. 1 refer to the 
fraction dNi/N of the solid which has diameters in the range a; to 
a i  + dai, N being the total number of particles. 

Further assumptions inherent in this treatment are that: ( a )  
the particles dissolve in isotropic fashion, and (b) the solubility is 
the same for particles of all sizes. The latter, of course, is not 
correct; in particular, the very fine (less than micron size) fraction 
of the powder sample has considerably higher solubility than the 
coarser cuts. Higuchi and Hiestand ( 1 ,  2) discussed some of the 
effects of this on dissolution rate patterns. 

Table 11-Number of Particles and Percent of Weight (Volume) 
Undissolved as a Function of Time-Length for a Particle-Size 
Distribution with Geometric Mean 40 (log p = 1.60206) and 
Standard Deviation u = 0.0138 

After Critical 
-Before Critical Time-Length- --Time-Length- 

&cent 
of 

Number Number Weight 

Time Particles dissolved Time Particles 

- 

of Un- of 

0 10,Ooo 100. 36.36 10,ooo 
3.63 10,Ooo 75 36.99 9,931 
7.27 10,ooo 59 38.06 9,370 

10.91 10,Ooo 39 39.02 I ,  728 
14.55 10,Ooo 26 40.53 3,249 
18.18 10,Ooo 16 41.47 1,191 
21.82 10,Ooo 9.5 42.19 413 

32.72 10,Ooo 0.66 

25.45 10,Ooo 4.9 43.50 7 
29.09 10,Ooo 2.1 44.00 0 
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TIME-LENGTH 

Figure 2--Number of particles as a functiori of time-length beyond 
the critical time-length. Data from Table 11. 

Weight and diameter are related by wi = 7r.ai3.p/6,  so dwi/dt = 
(r/2).ai*..p.doi/dt; this inserted in Eq. 1 yields: dutldt = - 2 . D . C , /  
p which integrates to: 

0 .  - a.0 - , - t [2.D*C.lpl.r  

I t  is noted that ai, with the assumptions made, is independent of 
particle-size distributions. 

Inserting Eq. 2 and the weight-diameter relation into Eq. 1 
yields the well-known cube root law: 

(Eq. 2) 

Since at time t = 0, w,o = (i~.p/6).(u,O)3, Eq. 3 may be rewritten: 

wio1 /~  -wWI1/a = [a .p /6I1 /a . [2 .D.C. /p] . t  (Q. 4) 

This derivation (aside from nomenclature) follows fairly closely 
that of other authors ( 5 ) .  
In the following discussion, the term 7 = [ 2 . D . C . / p ] . t  is used 

as a measure of time and is denoted as time-length (since it does 
not have a time dimension). If the smallest diameter in the powder 
sample is a,O, then Eq. 3 (as well as Eq. 4) holds for I < aao.p /  

100 

80 

n 
3 8 60 

'" n 
z 
3 
i 
z 

w 

40 
a w a 

20 

I I 

10 20 
TIME-LENGTH 

Figure %Amount undissoloed as a function of time-length in the 
period prior to the critical time-length. The geometric mean is 40 p,  
and the standard deoiation of the log-normal distribution is u = 
0.0138. 

DISSOLUTION PATTERN BEYOND CRITICAL 
POINT, :q p = 1.60206. w = 0,0138 I\ 

Figure 4- -Amount undissolued expressed as percent of the amount 
present at the critical time-length. The period cocered is that sub- 
sequent to the critical time-length. The geometric mean is 40 p 
originally, mid the standard deoiatiori of the log-normal distribution 
isu = 0.0138. 

2 . D . C . .  At the critical time, t ,  = a , o . p / 2 . D . C .  (i.e.,  T~ = a,"); 
at higher times the number of particles decreases. 

EXPERIMENTAL 

Log-normal (number) distributions were generated on a com- 
puter' for the 30 particle-size distributions shown in Table 1. A 
log-normal particle-size distribution is given by: 

where log p is the logarithmic mean, u is the standard deviation, 
and Pr(a) is the fractional frequency (probability) at  diameter a. 
The function is normalized (uia the preexponential factor) so that 
fy- Pr(a)da = 1; i.e., all values of a are possible. In a realistic 
situation, however, there are maximum and minimum diameters 
at  zero time (Q and 7cl respectively). If these are taken at  f 3 u  
( i .e. ,  if Q is given by log Q - log p = log p - log T~ = 30), then 
f'?- Pr(a)du = 0.9974, so employing the concept of maximum 
and minimum diameters at +3u inflicts only a small overall error. 

According to Eq. 2, the diameter decreases linearly in time. 
At any time length 7 < rC, the number distribution is identical 
to that at  zero time, but all diameters are smaller than the original 
by T .  In the initial stage, the weight fraction remaining undissolved 
then is: 

where NT) = exp [ - (log ( p  - 7 )  - log (a" - T ) I  2/2.02]. and a0 

refers t o  initial diameters. This integral is evaluated at  time-lengths 
O . ~ T ~ ,  0.27,, . . . , 0.97, by computer. The evaluation of the integral 
is performed by dividing the 3u-interval into 100 intervals and 
computing the area of the ensuing histogram. 

~~~ 

1 Univac model 1108. 
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TIM E-LEN GTH 

Figure 5-Data from Figs. 3 and 4 expressed in the form of cube 
root relations. The initial amount is set at 100, so that w denotes 
percent undissolved, 

57 

56 

5.5 

Once the critical time-length, T ~ ,  is reached, the number of 
particles decreases. The weight fraction remaining undissolved 
at any time-length 7 > T~ is given by the same integral as in Eq. 6 ,  
except the lower limit is now zero. The low tail of the distribution 
has been truncated in this expression. The situation is best depicted 
graphically as in Fig. 1, where the distribution is expressed as the 

- 

$4 
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- n  

- 
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0.96 

$ 0.95 

+ s 
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,33r 
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.31- 

A 

E - .19-.( 

.I8 .C 
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a 

A.  0,699 

D. 1,342 

W 

I 1 I I 
0.2 0.3 0.4 0.5 0.6 

7 4 - 1 O C : "  - ,  - - - -  
Figure 6-Slopes (a)  of lines of the type shown in Fig. 5 prior to the 
critical time-length, The slopes are shown as a function of the standard 
deviation of the particle-size distribution in a log-log fashion. 

U " 0.2 - s 

-0.2 

number of particles in a population of lO,oOO, as a function of 
diameter at 7 = 0, 7 = T ~ ,  and 7 > T ~ .  

To arrive at possible functional relationships, the analysis of 
the curves is broken down in the following into two parts: (a)  
data at T < rC, and ( 6 )  data subsequent to ' T ~ .  In the latter case, the 
weights (or volumes) are related to that at time 7 = 7c;  i.e., the 
function: 

is evaluated as a function of 7.  The function cannot be obtained in 
closed form and, as before, the integrals are evaluated by computer 
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3 0.6 
c a 2 0.5 
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INTERCEPTS ( 7 )  OF logo VERSUS l o g r  PLOTS AS A 
FUNCTION OF PARTICLE SIZE PRIOR TO CRITICAL 

POINT 

0.6 0.8 1.0 1.2 1.4 1.6 
LOGARITHM OF GEOMETRIC PARTICLE DIAMETER M E A N  

Figure 8-Intercepts of lines shown in Fig. 6 as a function of the 
logarithm of the standard deviation of the particle-sire distribution; 
7 < 7 c .  
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INTERCEPTS ( y )  OF logo VERSUS log, PLOTS AS A FUNCTION 
OF PARTICLE SIZE MEAN (loq p )  

+ 0.4 t 
N 

0.2 1 
o l  I I I I I I I I I I 

0.8 1.0 1.2 1.4 1.6 
LOGARITHM OF GEOMETRIC PARTICLE DIAMETER M E A N  

Figure 9-Intercepts of lines shown in Fig. 7 as a function of the 
logarithm of the standard deviation of the particle-size distribution; 
7 > TO. 

by dividing the f3a-interval into 100 intervals and using the areas 
of the ensuing histograms. The histograms in the numerator 
consist of 100, 99, 98, .  . . , 1 areas as the expression is evaluated 
at time-lengths rcr ( 0 . 9 9 ~ ~  + O.OlQ), ( 0 . 9 8 ~ ~  + O.O2Q), . . . , 
( 0 . 0 1 ~ ~  + 0.99Q). 

RESULTS 

A typical example of the number of particles as a function oftime- 
length beyond the critical time-length is shown in Table I1 and 
Fig. 2. All the solutions generated by computer have graphical 
presentations of the form shown in Figs. 3 and 4. The former is an 
example of the situation prior to the critical time-length, and the 
latter exemplifies the situation after the critical time-length. A 
combination of the two is an example of the entire curve which, of 
course, shows a (not necessarily very noticeable) elbow at the 
critical time. Attempts to linearize both parts of the curve by plot- 
ting log (w/wo) as a function of T or by probit function as proposed 
by Wood (12) are not successful in the framework of the assump- 
tions made here. If the datatare plotted by cube root treatment 
(Eq. 4), linearity results (Fig. 5). The slopes (a), of course, no 
longer have the meaning implied in Eq. 4. The slopes are a function 
of the standard deviation of the particle-size distributions and are 
listed in Table I, both for T < rc and r > 7.. The slopes in both time- 
length periods are logarithmically related to the standard devia- 
tions (Figs. 6 and 7). 

It is noted from Figs. 6 and 7 that (as expected) the slopes 
are independent of the particle-size average. The intercepts (y ) ,  
however, are dependent on particle size, and they appear to be 
proportional to the logarithm of the geometric mean (i.e., the 
average of log ao) as shown in Figs. 8 and 9;  here, again, each 
figure represents one type of time-length period ( r  < rc and T > 
TA.  

By employing best fits for the lines in Figs. 6 and 8, the following 
relations ensue: log a = -1.05.log u - log p + 1.7, so that a = 
50/(a*.06 . w )  and : 

for the time period prior to the critical point, and by similar treat- 
ment of the data in Figs. 7 and 9:  

for the time period subsequent to the critical point. 
Equations 8 and 9 together describe the general dissolution 

pattern for the log-normally distributed particle-size population 
when the particle dissolves isotropically and particle size-solubility 
relations are neglected. 
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